
Teaching Operating Systems Using Android

Jeremy Andrus
Dept of Computer Science

Columbia University
New York, NY

jeremya@cs.columbia.edu

Jason Nieh
Dept of Computer Science

Columbia University
New York, NY

nieh@cs.columbia.edu

ABSTRACT
The computing landscape is shifting towards mobile devices.
To learn about operating systems, it is increasingly impor-
tant for students to gain hands-on kernel programming expe-
rience in these environments, which are quite different from
traditional desktops and servers. We present our work at
Columbia University to teach operating systems using An-
droid, an open, commercially supported software platform
increasingly used on mobile and embedded devices. We in-
troduce a series of five Android kernel programming projects
suitable for a one semester introductory operating systems
course. Each project teaches a core operating system concept
infused with Android or mobile device specific context, such
as Android specific process relationships, use of sensors,
and design considerations for resource constrained mobile
devices. We also introduce an Android virtual laboratory
based on virtual appliances, distributed version control, and
live demonstrations which gives students hands-on Android
experience, with minimal computing infrastructure. We have
used these Android kernel programming projects and the
Android virtual lab to teach an introductory operating sys-
tems course. Although this was our first time teaching the
course using Android, over 80% of students surveyed en-
joyed using Android and the majority of students preferred
Android to traditional desktop development.

Categories and Subject Descriptors: D.4.0 [Operat-
ing Systems]: General; K.3.1 [Computers and Education]:
Computer Uses in Education–distance learning; K.3.2 [Com-
puters and Education]: Computer and Information Science
Education–computer science education

General Terms: Design, Experimentation, Human Factors

Keywords: Operating Systems, Android, Mobile Devices

1. INTRODUCTION
Hands-on learning through programming projects plays a

key role in computer science education, and hands-on kernel
programming projects are especially important in the area
of operating systems (OS). Many approaches to designing
these kernel programming projects have been proposed and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02 ...$10.00.

implemented. Several pedagogical OSes exist [4,13,14] where
students fill in or build missing subsystems. In recent years,
many institutions have also begun using Linux to teach OS
[1, 6, 11]. All these solutions focus primarily on desktop or
server environments, whether physical or virtual.

The computing landscape, however, is shifting. The dom-
inant computing platform is becoming the mobile device [5,
15]. The real-world constraints and operating environment
of mobile devices are quite different from traditional desktop
or server computers. It is important for students to learn in
this new environment, and its prevalence and popularity can
be used to create engaging programming projects.

We present our work using Android to teach OS through
hands-on kernel programming projects. We chose Android
for several reasons. First, as a production system it enables
students to learn about real-world OS issues which are hard
to glean from simplified pedagogical projects. Second, since
Android is based on the open-source Linux kernel, students
can leverage a wealth of Linux tools and documentation.
Third, Android’s use of the Linux kernel provides a familiar
transition path from courses already using Linux to teach
OS. Fourth, Android is the fastest growing mobile platform
to date, and its popularity makes it of tremendous inter-
est to students. Fifth, Android is open-source which allows
exploration of a complete production system including the
OS kernel, user space libraries, and a graphical user envi-
ronment written in Java. Sixth, as a commercial platform,
Android continues to be developed and improved which nat-
urally evolves the platform as a pedagogical tool, enabling
students to learn in a modern context. Finally, as a commer-
cial platform, there is no need for us to maintain or update
Android or any of its development tools. This allows us to
focus limited resources on teaching rather than time con-
suming in-house OS development.

To facilitate our use of Android to teach OS, we created
an Android virtual lab where students learn about oper-
ating systems using both emulated and physical mobile de-
vices. We manage the complexity of device cross-compilation
and production kernel development tools by providing a vir-
tual appliance pre-configured with all the software tools nec-
essary to develop an Android Linux kernel. A virtual ap-
pliance can be readily deployed, downloaded and used by
students without the installation or configuration necessary
to deploy Android development tools natively on their per-
sonal computers. Additionally, our Android virtual lab uses
a distributed version control system and live demonstra-
tion infrastructure to develop, distribute, submit and grade
homework projects. Our use of the Android emulator in con-

junction with this infrastructure allows remote and distance
learning students to take full advantage of our Android vir-
tual lab, while also facilitating close collaboration with on-
campus students using physical mobile devices.

Students work in groups to complete five Android Linux
kernel programming projects. These projects require stu-
dents to read and understand core Android Linux compo-
nents, and then either modify or add components as re-
quired. The projects build in complexity, and cover vari-
ous important OS topics: (1) system calls and process based
on the unique process hierarchy of an Android device, (2)
synchronization where a global resource such as the orienta-
tion sensor is shared amongst many processes, (3) schedul-
ing by exploiting Android’s single-application usage model
to increase device responsiveness, (4) virtual memory and
the exact size and nature of Android’s inter-process shared
memory, and (5) file systems with automatic geo-tagging.

We successfully used Android in a 100 student introduc-
tory OS course at Columbia University. Over 80% of stu-
dents surveyed enjoyed applying OS concepts to the Android
platform, and the majority of students preferred Android
over traditional desktop development.

2. ANDROID VIRTUAL LAB
Central to any OS development lab is universal access to

proper development tools for all students. Our Android vir-
tual lab provides each student with a pre-configured VMware
virtual appliance containing all the Android and Linux de-
velopment tools necessary to complete each programming
project. The set of tools includes all tools necessary to boot
and test a real device as well as the Android SDK com-
prising the Android emulator, a tool to create virtual de-
vices, and a device debug GUI tool. We also include a cross-
compilation toolchain, Android’s Bionic C library, and sev-
eral shell scripts to mitigate the complexity of embedded
development.

Although Android development tools are available for a
wide variety of platforms, we provide a pre-configured vir-
tual appliance for four important reasons. First, we avoid
mistakes or incompatibilities in development tool installa-
tion. For example, when the course was offered, the An-
droid development tools did not support Mac OS 10.6, Mac
OS versions prior to 10.4, or Linux distributions other than
Ubuntu. Students may also use non-standard PC configu-
rations which would put unnecessary management burden
on the instructional staff. Second, the virtual appliance can
be used as a safety net for students who corrupt their de-
velopment tool installation or experience complete system
failure. The VMware Workstation snapshot feature can be
used to make incremental backups of student work and any
changes they make to the development environment. A snap-
shot is also an easy way for students to begin a homework
assignment from a known good configuration. Third, by pre-
configuring all of the development tools, we avoid compli-
cated cross-compilation setup by providing simple, standard
Makefiles and shell scripts for both kernel and user-level de-
velopment. The Android SDK is designed primarily for GUI
application development not kernel development, so some
configuration of the compiler and Android runtime libraries
is necessary. A standardized environment allows us to pro-
vide simple Makefile examples for user-level test programs
and simple Linux kernel cross-compilation instructions. Fi-
nally, the virtual appliance gives us freedom to customize

both the tools and the Android user space. Customizing
the Android user space allows us to create more engaging
projects as well as to overcome deficiencies in development
tools. We use a customized version of the Android emulator
which enables students to use the Sensor Simulator program
from OpenIntents [12] to inject orientation and acceleration
data into the emulator by interacting with a 3D model of
a phone instead of manually entering numbers into a shell
prompt. We also use a custom device drawing library to sup-
port the kernel scheduling project described in Section 3.3.

To manage homework project preparation, distribution,
submission and grading, we use the Git distributed ver-
sion control system, already used by Android and Linux
for source code version control. Each homework assignment
consists of a single Git repository that typically contains a
complete Linux kernel tree, template user-space projects as
necessary, any additional tools needed to complete the as-
signment, and a Makefile used to prepare the student’s em-
ulator or device for project development. Instructional staff
prepare each project repository and push it to a central Git
server. The repository is then replicated such that all stu-
dent groups are given access to their own private repository
on the Git server. The central Git server also facilitates dis-
tributed group collaboration even when one or more students
are remote or distance learning students.

To maximize grading efficiency, we extend the previously
developed concept of live demonstrations [7]. Three or four
student groups are assigned an hour long demo time slot.
During the first 20-30 minutes, all student groups perform
a complete clone of their homework submission Git repos-
itory, cross-compile the Linux kernel for their mobile de-
vice, and install and boot the new kernel. In the last 30-40
minutes, the staff meets individually with each group. Dur-
ing this time, groups demonstrate functionality required by
the homework, further explain their solution methodology,
and participate in a basic code review. This time helps in-
structional staff to better understand the group’s submis-
sion, correct common mistakes, and see how group members
contributed to an assignment. Live demos also provide op-
portunities for instructional staff to explain solutions which
can facilitate a more complete understanding of difficult and
challenging assignments.

Our Android virtual lab is designed to support remote or
distance learning students, though such students may only
have access to the emulator and not a real Android device.
These students can still participate in demonstrations using
freely available screen-sharing applications such as Skype,
join.me or VNC.

3. KERNEL PROJECTS
Using our Android virtual lab, students work in groups to

complete five kernel programming projects. These projects
require students to read, understand, and modify core Linux
components. While some projects require writing a simple
user space test program, students are never required to com-
pile the entire Android code base or write any GUI appli-
cations. The five projects focus on five important OS con-
cepts, and infuse Android or mobile device specific investi-
gation into the assignment. The five areas covered by the as-
signments are: system calls and processes, synchronization,
scheduling, virtual memory, and file systems. Correspond-
ing Android-related topics incorporated in these areas are:
the zygote process and Java worker threads, device sensors,

display-prioritized scheduling, multi-process working set via
copy-on-write shared memory, and location aware file sys-
tems.

The assignments progress in complexity, building not only
on OS principles learned in earlier assignments, but also on
Android specific knowledge gained. For example, the first
assignment requires students to investigate the Android pro-
cess tree and note how all GUI programs are children of a
process named zygote. In a subsequent homework, they in-
vestigate the cross-process memory sharing method used by
the zygote to save system RAM. We formalize each project’s
Android and mobile device investigation by asking students
to answer a small number of questions designed to make
them reflect on how the particular OS concept was applied
in the context of an Android or mobile device.

All assignments are intended to keep students focused on
the OS principles being taught, and designed such that a
group of two or three students can complete them with
no prior kernel or Android experience. We provide detailed
step-by-step instructions on cross-compiling and device or
emulator use. Android specific aspects of the assignments
are presented as practical application of the core principle,
and most of the Linux kernel modifications necessary to com-
plete the assignments are contained in architecture indepen-
dent code. Thus, the solution complexity remains manage-
able and homework setup and prerequisite topic knowledge
is kept to a minimum, yet students engage with a complex,
real-world system.

3.1 System Calls and Processes
The first project lays the groundwork for future projects as

students investigate the primary application abstraction, the
process, and its primary interface into the kernel, the system
call. Our focus in this assignment is process creation, termi-
nation, properties, and relationships in the context of a mo-
bile device. In completing this assignment, students also gain
an understanding of kernel data structures, such as linked
lists, and their APIs. All subsequent assignments require
students to be intimately familiar with these concepts.

Students write a new system call which returns the system
process tree in DFS order. This involves modifying archi-
tecture specific system call entry points, manipulating and
traversing the kernel data structures representing processes
and threads, and managing data transfer to and from the
kernel. To test the system call, they write a simple user
space application to invoke this new system call and print
out the process tree similar to the UNIX ps utility.

The system call allows students to examine Android’s
process tree and application startup method, which pro-
vide insight into a key system design that drives the entire
Java-based user environment. Java applications are inter-
preted in the Dalvik virtual machine, and are represented in
the OS as processes which are children of a special process
called the zygote. The Dalvik virtual machine starts several
worker threads for each application to handle things like in-
put events and garbage collection. Thus, the process tree of
Android devices shows not only the relationship between the
init process and its children, but also the relationship that
all Java applications have to the zygote and the symmetry
of their component threads.

Students investigate the zygote process using their test
program, and are asked to reason why an embedded or mo-
bile system might use such a process. This reflection is de-

signed to connect the pedagogical concept of process cre-
ation using copy-on-write memory to a real-world mobile
device with memory and disk constraints. Benefits of the
zygote include faster application startup time, and cross-
process memory sharing of core library code and static data.

The Android emulator enables remote or distance learn-
ing students taking the class to complete this assignment
without a physical device. The Android emulator provides
a complete machine emulation in which a standard version
of the Android runtime is installed and run. Thus, remote
or distance learning students can investigate the Android
process tree using the emulator in the same way on-campus
students use real devices.

3.2 Synchronization
The second project focuses on synchronization, a critical

aspect of a modern multi-tasking OS. The wealth of sensors
available on modern mobile devices provides an excellent
pedagogical vehicle to demonstrate real-world applications
of synchronizing concurrent or interleaved access to a sin-
gle resource. In completing this assignment, students also
gain an appreciation for manipulating and interacting with
embedded system sensors.

Students implement a novel synchronization primitive, the
orientation event, which allows multiple processes to block
until the mobile device has been put into a particular orien-
tation. For example, a process can block until the phone is
placed face down on a table. To accomplish this, they first
write a user space daemon which reads device orientation
through a standard Android hardware abstraction library,
and then passes the data into the kernel through a new
system call. The orientation event interface is implemented
as a set of three new system calls: orientevt_open, ori-

entevt_close, and orientevt_wait. The daemon process
passing device orientation into the kernel functions as the
signal which wakes up any blocked process. Students test
this new interface by writing several small test programs.
Each test program forks multiple children, and each child
process blocks on an orientation event opened by its parent.
When the device is moved within the range of the desired
orientation, all child processes should be unblocked.

Orientation and acceleration sensors are an integral part
of the mobile device experience, and incorporating them into
a synchronization project gives students an experience that
desktop or server machines cannot provide. The ability for
multiple processes to wait for a device to enter a particu-
lar orientation or acceleration profile has many possibilities
in real-world user applications and system services such as
interactive game controls and pre-fall system shutdown.

As students investigate sensor-based synchronization on
Android, they are also exposed to real device interaction
using a hardware abstraction layer. This interaction nec-
essarily includes basic understanding and manipulation of
sensor data. We provide several helper functions to keep the
students focused on the primary topic of synchronization,
however the exposure to real-world device data is a valuable
experience which can be directly applied in the workforce.

The Android emulator provides the ability for remote or
distance learning students to complete this assignment with-
out a physical device. We provide a modified version of the
Android emulator, a daemon process to run on the emula-
tor, and a Java-based host application which simulates [12]
a mobile device using a 3D wire-frame model. As students

manipulate the model in the Java application, orientation
information is sent to the daemon process which updates em-
ulator state. The Android hardware abstraction layer reads
this emulator state. In this way, remote students can have a
similar experience to on-campus students

3.3 Scheduling
The third project focuses on scheduling. Mobile devices

generally operate as a single user environment, and thus have
significantly different scheduling requirements from desktop
or server machines. For example, Android users typically
view a single application at a time, not multiple applications
in multiple windows.

In what is one of the most challenging projects, students
write a new scheduling policy for the Linux kernel. This
is the first assignment which requires students to manip-
ulate a substantial portion of core Linux kernel code. To
mitigate the daunting task of implementing a new sched-
uler, we leverage the modular scheduling framework in Linux
which provides several examples of self-contained schedulers.
We encourage students to use these existing schedulers as
templates. The new scheduling policy trades fairness and
throughput for responsiveness, a key metric in mobile de-
vices. We call our new scheduler, “Display Boosted Multi-
level Container” (DBMC) scheduling, and the primary ob-
jective of this scheduler is to “boost” the priority of fore-
ground applications. Since mobile devices typically display
a single application at at time, boosting the priority of this
single, foreground, application decreases its execution time
and increases the apparent device responsiveness.

To support DBMC scheduling, we made a small (15 line)
change to the Android user space environment that lever-
ages the Android application usage and security model. In
contrast with desktop Linux systems, Android only allows a
single application to use the display at a time. While mul-
tiple applications can run simultaneously, only one draws
on the screen. When an application is installed onto an An-
droid device, a unique user ID is generated and assigned to
the application. The application is always run using these
unique credentials. We wrote a simple, 15-line patch to a core
Android drawing library, libsurfaceflinger.so, which in-
forms the kernel of the process ID of the application cur-
rently drawing on the screen. Students use the unique user
ID associated with the process to easily assign the associ-
ated threads and processes to a single scheduling entity, the
container. The container is used for scheduling so that the
priority boost is applied to all of the threads and processes
of the foreground application.

Students are asked to run Android using their new sched-
uler and consider what qualitative impact there is on system
performance compared to the existing Linux scheduler. A
correct solution implemented on the Google ADP1 booted
the GUI 5–10 seconds faster than the standard Linux ker-
nel, but initialized the network and cellular connections sig-
nificantly slower. Students are also asked to reflect on this
scheduler’s impact on graphics-intensive games where pro-
cess starvation can occur and overall game play can suffer.

The Android emulator provides a similarly satisfying ex-
perience for remote and distance learning students. The same
modified drawing library is used in the emulator. A cor-
rect solution implemented on the emulator booted the GUI
faster, and made the entire UI qualitatively more usable and
responsive.

3.4 Virtual Memory
The fourth project explores memory management, a crit-

ical aspect of mobile device OSes, with a focus on virtual
memory and paging Using a mobile device to investigate vir-
tual memory and paging highlights real-world system con-
straints and provides a unique platform to investigate cre-
ative solutions in memory sharing and allocation.

Students write a new monitoring mechanism to track the
working set of specified processes, and a new system call
to extract the recorded data. The working set is defined as
the set of pages accessed (read or write) by a process during
some time period. To test this mechanism, students add a set
of processes to the monitoring mechanism, and then write
a user space program that invokes the new system call and
displays usage information for each process.

Here we follow up the investigation of the zygote process
seen in the first project as discussed in Section 3.1. This
process loads several libraries and Java classes, pre-initializes
Dalvik virtual machine state, and listens on a socket for con-
nections from a client. To start a Java application, Android
connects to the zygote socket and requests that the process
fork. The child begins executing Java code at a particular
method of a specified class, and the parent resumes listening
on the socket. When the child forks, all memory mapped by
the parent is shared copy-on-write with the child. This in-
cludes all loaded libraries and initialized Dalvik virtual ma-
chine state. This is drastically different from a traditional
desktop or server where processes are spawned from a shell
or init process that has little or nothing in common with the
application being started.

Students use their working set monitor to investigate the
cross-process shared memory of the zygote and its children.
We define the set of pages originally mapped by the zygote
as the, “Android working set.” Students use their user space
utility to calculate the intersection of the Android working
set with the working set of each zygote child process. For
simplicity, we assume that no process un-maps or re-maps
a region of memory originally mapped by the zygote; this
allows us to use the virtual addresses returned by our new
system call without needing a more complicated virtual to
physical address mapping. By investigating the unique im-
plementation of a zygote process, students gain an appreci-
ation for the memory constraints of a real device and can
measure the effectiveness of Android’s zygote solution for
reducing memory usage.

The Android emulator provides the ability for remote or
distance learning students to complete this assignment with-
out a physical device. The assignment does not require the
use of any physical device features.

3.5 File Systems
The final project focuses on file systems. Similar to virtual

memory, file systems tend to be large and complex pieces of
code, so we have students implement extensions to an exist-
ing file system code base. This assignment requires students
to gain practical understanding of how the virtual file system
(VFS) infrastructure is designed, which is the key file sys-
tem abstraction layer that every file system designer needs
to understand. In addition to the file abstraction, students
are exposed to issues that arise in real-world systems, such as
the endian-ness of permanent data storage, data consistency
and reliability, and embedded data retrieval.

Students modify an existing disk-based file system to auto-
matically include GPS information so that this information
can be used by any application. We refer to this as the geo-
tagged file system. All files and directories in a geo-tagged
file system include embedded location information in the
form of latitude and longitude values. Students write a new
system call and user-level daemon to inform the kernel of the
current device location, which is retrieved from the GPS sen-
sor via the Android hardware abstraction library similar to
the one used in the second project discussed in Section 3.2.
Students then modify the ext2 file system to retrieve the
last known location data and update a file or directory every
time it is created or modified. Students test the geo-tagged
file system by writing a second system call to retrieve the em-
bedded location data for a given pathname. This assignment
brings together several topics from earlier homework assign-
ments including system calls, synchronization, and sensor
data management. As a more advanced challenge, students
can implement VFS layer interfaces which would allow any
disk-based file system to implement the geo-tagging.

While it is possible to use a GPS sensor with a desktop or
laptop system, the integration of location services in a mo-
bile device is much more engaging, and exposes the student
to real-world issues of sensor data reliability and permanent
storage. In addition to the actual device location returned
by the hardware abstraction layer, we also ask students to
store the relative “age” of the location data (the number of
seconds since the location was last updated in the kernel).
This provides a basic confidence metric that can be used
when later retrieving a file’s location.

Students discover the practicality of their solution as they
create a file system image which contains at least three files
with unique location data. Students can have fun visiting
different places while keeping track of exactly where they
were with a simple shell command on their phone such as:
echo "HERE" > `date +"%s"`.txt.

The Android emulator provides an emulated GPS sensor,
allowing remote and distance learning students to fully par-
ticipate in the assignment. The emulated location is accessed
using the same hardware abstraction layer library used on
the real device, and can be updated using the emulator’s de-
bug interface. The Android development tools also provide
a graphical utility which can update the emulator’s location
by reading .kml files generated in Google Earth. Thus re-
mote and distance learning students can take a virtual trip
using Google Earth and save files in their geo-tagged file
system from each location they visit.

4. EXPERIENCES
We used Android as the homework project platform in

an introductory course on operating systems at Columbia
University in Fall 2010. This was the first time we taught
the entire course using Android devices and Android-kernel
projects. Despite our mistakes and mis-steps, the overall re-
sponse from students was overwhelmingly positive. Approx-
imately one hundred students enrolled in the course, and
we asked all of them to complete evaluation surveys at the
end of the course. Sixty percent of the students completed
the survey. Figure 1 shows the results. Of those students
who completed the survey, 80% said they enjoyed using An-
droid in the course. Most students who completed the sur-
vey said Android was both helpful in learning OS concepts

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Enjoyed applying
OS concepts to

Android

Android
homeworks were
helpful in learning

OS concepts

Android
development was

more fun than
desktop

devleopment

Android
development was
more educational

than desktop
development

Future classes
should use

Android

Agree Disagree No Opinion

Figure 1: OS Course Survey Results

and more fun than traditional desktop development; stu-
dents preferred Android to traditional desktop development
by a ratio of 3 to 1. In addition, not more than 21% of the
students actively disagreed with any given survey question.

Students were also asked to comment on what they en-
joyed the most and what they enjoyed the least about the
course. Students found the Android kernel projects fun, ex-
citing, engaging and educational. They also appreciated the
practical skills gained from their experience. When asked
the question, “What did you like best about using Android
for this course?” students responded with:

• “The practicality of it,”

• “More fun and exciting,”

• “It’s more like real work, not just homework,”

• “Increased curiosity about mobile platforms,”

• “Using a modern system,”

• “All sensor related assignments were fun.”

Negative feedback was concentrated around the speed of
the emulator and debugging of the embedded systems (em-
ulator and mobile device). Students felt that the emulator
was too slow, and that debugging an embedded kernel was
overly complicated. Unfortunately, the speed of the emulator
is directly correlated to the speed of the laptop on which it is
run, and because the mobile device uses an ARM processor
the instruction set must be emulated which is a slow process.
In the future, as SMP support for ARM is integrated into
QEMU, and as laptop processor speeds increase, it should be
possible to speed up the emulator. Debugging an embedded
system is an inherently complicated task, and simplifying
the process is not easy. One approach to this problem is to
create more explicit and detailed instructions on the use of
Android and kernel level debugging techniques. such as the
use of /proc/last_kmsg which stores the kernel log message
buffer of the last booted kernel and can be used to diagnose
the previous kernel crash. It also may be possible to provide
hardware-modified devices that expose either a JTAG con-
nection for low-level debugging, or a serial port for simplified
kernel debugging. The Google ADP1, for example, exposes
serial RX/TX pins on its ExtUSB connector.

Finally, although students had some difficulty with de-
vice debugging, the overall experience using Android as the

homework project platform in our introductory OS course
was positive. Students not only learned the OS principles
being taught, but also gained valuable real-world skills such
as practical device debugging and embedded code develop-
ment. We have already heard from students who were able
to directly apply the skills they learned in this course to a
professional job or internship opportunity.

5. RELATED WORK
In recent years, courses using the Linux kernel for OS pro-

gramming projects have become increasingly popular [1, 6,
8, 11]. However, these approaches focus primarily on Linux
desktop and server environments and provide no hands-on
experience with mobile platforms. Lawson et al [9] describe
a single programming project where students modify a Linux
kernel designed to run on an iPod. However, this single
project does not incorporate any mobile device specific ped-
agogy and does not provide a rigorous, project-based cur-
riculum for understanding OS principles in the context of
mobile platforms. The BabyOS [10] and embedded XINU [3]
projects focus on embedded systems, but lack the real-world
applicability of a production Linux kernel. Furthermore, be-
cause Android is based on the Linux kernel, our approach
provides a straightforward transition path for courses that
already use the Linux kernel to incorporate the mobile and
embedded concepts embodied in our Android projects. Our
approach provides a mapping of structured Linux kernel pro-
gramming projects onto the Android platform where stu-
dents gain insight into real-world systems and learn practical
skills immediately applicable in today’s job market.

Various pedagogical OSes have also been developed [4,13,
14], but none of them offer students practical experience or
insight into modern mobile platforms. Atkin et al [2] devel-
oped a pedagogical OS focused on portability and mobility.
However, all programming projects are done at user level in
a simulator, and do not offer the engaging, real-world expe-
rience of using a popular, mobile computing platform such
as Android on real mobile devices.

Several institutions offer courses in mobile application de-
velopment [16] . These courses focus on mobile application
APIs, and do not teach OS concepts. They offer no insight
into the lower-level software infrastructure of mobile plat-
forms on which applications run. In contrast, our method
of using Android to teach OS provides students with a real
understanding of how things work under the covers as em-
bodied by the unique OS environment created by the Linux
kernel running on a mobile device.

6. CONCLUSIONS
We have developed a series of hands-on Android Linux

kernel programming projects designed to immerse students
in a mobile computing environment while simultaneously
teaching core OS principles. The projects progressively in-
troduce OS principles and mobile computing, and implicitly
teach students about real-world embedded device develop-
ment. We use key aspects of modern mobile devices, such as
orientation sensors, to enrich the hands-on experience and
increase student engagement.

We created an Android virtual lab where both on campus
and remote students complete Android Linux kernel pro-
gramming projects using an emulator or mobile device. We
also leverage a distributed version control system and live

demonstration infrastructure for homework design, distribu-
tion, submission, and grading. Our experience with 100 stu-
dents using Android to teach OS demonstrates that students
enjoy using mobile devices while learning OS principles, and
appreciate the practical skills they gain.

7. ACKNOWLEDGEMENTS
This work was supported in part by NSF grants CNS-

1018355, CNS-0914845, and CNS-0905246, and a Google Re-
search Award.

8. REFERENCES
[1] C. L. Anderson and M. Nguyen. A Survey of Contemporary

Instructional Operating Systems for use in Undergraduate
Courses. Journal of Computing Sciences in Colleges,
21:183–190, October 2005.

[2] B. Atkin and E. G. Sirer. PortOS: An Educational Operating
System for the Post-PC Environment. In Proceedings of the
33rd ACM Technical Symposium on Computer Science
Education, SIGCSE ’02, pages 116–120, New York, NY, USA,
2002. ACM.

[3] D. Brylow. An Experimental Laboratory Environment for
Teaching Embedded Operating Systems. In Proceedings of the
39th ACM Technical Symposium on Computer Science
Education, SIGCSE ’08, pages 192–196, New York, NY, USA,
2008. ACM.

[4] R. Cox, C. Frey, X. Yu, N. Zeldovich, and A. Clements. Xv6 –
A Simple Unix-like Teaching Operating System.
http://pdos.csail.mit.edu/6.828/xv6/.

[5] Deloitte Development, LLC. Deloitte Predictions for the
Technology, Media and Telecommunications Sector, 2011.
http://www.deloitte.com/us/telecompredictions2011.

[6] R. Hess and P. Paulson. Linux Kernel Projects for an
Undergraduate Operating Systems Course. In Proceedings of
the 41st ACM Technical Symposium on Computer Science
Education, SIGCSE’10, pages 485–489, New York, NY, USA,
2010. ACM.

[7] O. Laadan, J. Nieh, and N. Viennot. Teaching Operating
Systems Using Virtual Appliances and Distributed Version
Control. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, SIGCSE’10,
pages 480–484, March 2010.

[8] O. Laadan, J. Nieh, and N. Viennot. Structured Linux Kernel
Projects for Teaching Operating Systems Concepts. In
Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education, SIGCSE’11, pages 287–292,
March 2011.

[9] B. Lawson and L. Barnett. Using iPodLinux in an Introductory
OS Course. In Proceedings of the 39th ACM Technical
Symposium on Computer Science Education, SIGCSE ’08,
pages 182–186, New York, NY, USA, 2008. ACM.

[10] H. Liu, X. Chen, and Y. Gong. BabyOS: A Fresh Start. In
Proceedings of the 38th ACM Technical Symposium on
Computer Science Education, SIGCSE ’07, pages 566–570,
New York, NY, USA, 2007. ACM.

[11] J. Nieh and C. Vaill. Experiences Teaching Operating Systems
Using Virtual Platforms and Linux. In Proceedings of the 36th
ACM Technical Symposium on Computer Science Education,
SIGCSE ’05, pages 520–524, New York, NY, USA, 2005. ACM.

[12] OpenIntents. SensorSimulator – openintents – Sensor Simulator
for simulating sensor data in real time. – Make Android
applications work together. – Google Project Hosting.
http://code.google.com/p/openintents/wiki/SensorSimulator.

[13] B. Pfaff, A. Romano, and G. Back. The Pintos Instructional
Operating System Kernel. In Proceedings of the 40th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’09, pages 453–457, New York, NY, USA, 2009. ACM.

[14] A. S. Tanenbaum. A UNIX Clone with Source Code for
Operating Systems Courses. SIGOPS Operating Systems
Review, 21:20–29, January 1987.

[15] Wikipedia. Mobile Device – Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Handheld_device.

[16] E. Woyke. iPhone and Android Apps 101.
http://www.forbes.com/2008/11/11/
mobile-apps-colleges-tech-wire-cx_ew_1111mobileapps.html.

http://pdos.csail.mit.edu/6.828/xv6/
http://www.deloitte.com/us/telecompredictions2011
http://code.google.com/p/openintents/wiki/SensorSimulator
http://en.wikipedia.org/wiki/Handheld_device
http://www.forbes.com/2008/11/11/mobile-apps-colleges-tech-wire-cx_ew_1111mobileapps.html
http://www.forbes.com/2008/11/11/mobile-apps-colleges-tech-wire-cx_ew_1111mobileapps.html

	Introduction
	Android Virtual Lab
	Kernel Projects
	System Calls and Processes
	Synchronization
	Scheduling
	Virtual Memory
	File Systems

	Experiences
	Related Work
	Conclusions
	Acknowledgements
	References

